<<Type>> Real {Analysis} derived from: Number

Documentation
The common binary Real finite implementation using base 2. Since such reals can approximate any measure where absolute accuracy is not possible, this form of numeric is most often used for measures. In cases were absolute accuracy is needed, such as currencies, then a decimal representation may be preferred (assuming the currency is decimal, such as the US dollar, British pound, etc.). Where there are no subunits possible, Integer numbers may be preferred.

Can be thought of as an integer part followed by a fractional part given in multiples of powers of 1/2 (halves).


Parent PackageNumericsAbstractNo
Export ControlPublicAccessLink Class forNone
Class KindNormalClassCardinalityn
Space ConcurrencySequential
PersistenceYes  


Operations
NameSignatureClass
floorInteger floor ()Real
absoluteValueReal absoluteValue ()Real
asDecimalDecimal asDecimal (Integer length)Real
=Boolean = (Number n)Number
<>Boolean <> (Number n)Number
<Boolean < (Number n)Number
<=Boolean <= (Number n)Number
>Boolean > (Number n)Number
>=Boolean >= (Number n)Number
+Number + (Number n)Number
-Number - (Number n)Number
*Number * (Number n)Number
/Number / (Number n)Number
negateNumber negate ()Number
absNumber abs ()Number
minNumber min (Number n)Number
maxNumber max (Number n)Number
asIntegerInteger asInteger ()Number
asRealReal asReal ()Number
asStringCharacterString asString ()Number


Generalization Relationships
NameClassSupplier
--Not Named--RealNumber